Revelation 13:18 NASB

Revelation 13:18 NASB

Wednesday, August 7, 2013

Making Biometrics Better

Fujitsu develops 2,048-bit palm vein biometrics

August 6, 2013 - Fujitsu Laboratories has announced that it has developed technology to extracting and match 2,048-bit feature codes from biometric palm vein images.

According to the company, in contrast to existing matching processes of comparing vein feature patterns, the new method employs feature codes extracted from vein images that represent the features of the images in binary format. This, in turn, allows for simple comparison calculations and rapid authentication. As multiple feature codes can be generated from a single piece of biometric data, different codes can be used for different biometric authentication services. As a result, even in the case of leaked registered data, a new feature code can be generated and registered to give users peace of mind and uninterrupted service.

The supplier hopes that the new technology will expand the scope of use for palm vein authentication technology, while also enabling a larger number of customers to safely and securely take advantage of biometric authentication.

Technological Issues
Generating multiple biometric features from a single piece of biometric data makes it possible to register data that differs according to each service. Moreover, even if the registered data were to be lost, it would be possible to change a conversion method and generate a new biometric feature code, thereby delivering an uninterrupted service with peace of mind. Technology that can generate multiple feature codes from a single piece of biometric data is known as "cancelable biometrics" or "renewable biometrics".

With palm vein authentication, it is possible to enable cancelable biometrics by transforming and storing the original vein image or the extracted palm vein feature pattern based on a conversion method. However, because comparisons require pattern matching processing, as with previous vein authentication technology, the process can be slow. Alternatively, the pattern matching process can be avoided by extracting a feature code that numerically represents the pattern feature of a vein image and matching this feature code through a simple numerical computation. This method reduces processing time but is also problematic in that the feature code is easily impacted by the hand's position (the incline of the hand e.g. tilted forward or to the side) and its shape (e.g. if the hand stretched out or slightly relaxed) when capturing the pattern.